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In this paper, we describe a procedure for inversion of autoconvolution integrals arising in 
several surface scientific methods. The solution is obtained by rigorous application of cubical 
spline functions. The method offers excellent numerical stability. Error propagation is 
discussed, and deconvolution examples are given for a characteristic isochromat, a soft X-ray 
appearance potential and an Auger electron appearance potential measurement of the iron L,,, 
level. 

I. INTRODUCTION 

Line shapes in several surface analytical measurements are interpreted in a first 
approximation as the selfconvolution of the density of either occupied or empty 
electron states. As an example, we briefly describe appearance potential 
spectroscopies. In appearance potential spectroscopies, one observes electronic tran- 
sitions from a core level to the unoccupied part of the conduction band of the sample 
produced by electron impact. Electrons with initial energy E, with respect to the 
Fermi level of the sample and with E, sufficient to produce a core hole are scattered 
to empty states above the Fermi level. The same is true for the ionized electrons. The 
energy excess E of an incident electron over the core level binding energy is shared 
with the ionized electron. Assuming energy independent transition matrix elements 
and neglecting core hole lifetime broadening, the rate of core hole production P(E) is 
found to be proportional to the autoconvolution of the density of unoccupied states 

I 
E 

f’(E) CC N(E) N(E - E) de. (1) 
0 

If the core hole production is monitored by detection of characteristic X-radiation, 
the technique is called characteristic isochromat spectroscopy (CIS) [2]. An integral 
of exactly the same structure forms the basis for the interpretation of ion 
neutralization spectra (INS) in terms of the density of tilled one electron states 131. 

A different way to monitor core hole production is to measure the total X-ray flux 
emitted by the sample. The onset of core hole production with increasing impact 
energy manifests itself in a very small but abrupt increase in the total intensity of 
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emitted X-rays. In order to suppress the slowly varying background from non- 
characteristic Bremsstrahlung and retrieve the signal part due to core hole 
production, the potential modulation differentiation technique [4] is usually applied. 
The observed signal is then the derivative of (1) 

P’(E) cc N(E) . N(0) + I” N(E) N’(E - E) de. (2) 
0 

The threshold behaviour of (2) is determined by the Fermi function and consequently, 
the first term in (2) vanishes. This spectroscopic technique is called soft X-ray 
appearance potential spectroscopy (SXAPS) and has been used extensively by Park 
and Houston [5]. A corresponding integral occurs in the interpretation of core-valen- 
ce-valence Auger electron spectra which can be interpreted within this model in 
terms of the density of filled valence band states [6]. 

Still another method to observe core hole production is Auger electron appearance 
potential spectroscopy (AEAPS) [7]. In this technique, secondary electrons emitted 
from the sample are monitored. When the threshold for core hole production is 
crossed, their yield shows small increases due to Auger electron emission. In 
sufficiently small energy intervals, the background of all the other electrons is a 
quadratic function of primary beam energy. Therefore, the desired characteristic 
signal is retrieved by potential modulation differentiation recording the second 
derivative. This may be obtained from (2) by straightforward differentiation and 
subsequent partial integration as 

E P”(E) cc 
I 

N’(E) N’(E - E) dc. (3) 
0 

The aim of the present paper is to describe deconvolution methods for the three 
cases relying on cubical spline functions. The mathematics will be outlined in 
sufficient detail to enable the interested reader to solve his specific problem. 

II. DECONVOLUTION 

The basic idea for inverting (l), (2), and (3) will be outlined with reference to (1) 
for definiteness. Details differing for the three cases will be treated in Section V. By 
suitable choice of reduced variables, (1) is rewritten as 

P(y) = j-’ U(x) U(y - x) dx 
0 

(4) 
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and (2), (3) correspondingly as 

P’(y) = I’ U(x) U’(y -x) dx, 
0 

P”(y) = I’ V(x) u’(y -x) dx. 

0 

The threshold behaviour of the physical processes discussed translates in all three 
cases into U(0) = 0. The prominent difficulty in solving (4) for V(y) is that P(y) is 
not known as an analytical function but rather as a discrete set of experimental data 
p,, which of course carry experimental uncertainty. Hagstrum and Becker [8] call an 
attempt to solve (4) starting with pU an “incorrectly posed” problem since any such 
attempt may lead to a catastrophic solution U(y). 

Before proceeding with the treatment of (4), we briefly recall the definition and 
prominent properties of cubical spline functions. A cubical spline function a(x) 
satisfying the boundary conditions u”(a) = a”(b) = 0 [9] provides a unique solution 
to the interpolation problem 0(x,,) = h, for a <x < b. a(x) is everywhere in (a, b), 
especially at the pivotal points x, two times continuously differentiable and is a 
function with minimum curvature in the sense that 

J@ 1 h”(x)l’ dx > ,t Iu”(x)~~ dx, 
(2 a 

where h(x) denotes any other two times differentiable solution of the interpolation 
problem h(x,) = h,. On each interval (x,, x,+ , ), U(X) coincides with a third order 
polynomial. If we drop the strong interpolation requirement a(~,,) = h,, an approx- 
imate interpolant may be obtained by minimizing the functional 

I 
1 Iu~(x)/* dx + 11 (h, - a(~,))* = Min. (6) 

n 

The first term in (6) controls the requirement of minimum curvature resulting in a 
smooth function u(x), while the second term forces u(x) to approximate the given 
data set h,. The parameter ,l weights these two requirements. 

Application of this scheme to the approximate solution of (4) is obvious. We 
simply require the minimization of the functional 

@ = c”““” 1 U’(x)l’ dx + A /y (P, - PJ’, 
Jo ” 

P, being the experimental data while P, is given by 

P, = 
I 

‘” U(x) U(y, - x) dx. 
0 

(8) 
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To be consistent with the first term in (7), we choose U(x) to be a cubical spline 
function. U(x) is then uniquely determined by its values U, at the pivotal points x,, 
U, = U(x,) and the boundary conditions U”(0) = V’(x,,,) = 0. The integrations in 
(7) (8) may then be carried out formally leading to 

*= 2 UiWijUj+A e (P,-pn)‘, 
i,j=O Zl 

(9) 

P,= fy cij,uiuj, n = l,..., N. 
i,.i=O 

(10) 

The calculation of matrices W, and C,, will be outlined below in Sections III, IV, 
and V. With these matrices given, minimization of @ with respect to U,, leads to a 
system of nonlinear equations for U,. Iterative solution of these equations will be 
described in Section VI. 

III. CONSTRUCTION OF SPLINE FUNCTIONS 

In order to compute the matrices Wij and Cijn, we need an explicit representation 
of U(x) in terms of the unknown U,. Due to the uniqueness of the spline inter- 
polation problem, such a representation exists for any given set U,,. It would, 
however, be hopelessly complicated to evaluate this representation explicitly for the 
general case of arbitrarily distributed pivots x,. For the special case of equidistant 
pivots, which nearly always applies to experimental conditions, the situation is more 
favourable, and an elegant solution to the problem can be constructed. The basic idea 
is that of arbitrary order Lagrangian polynomial interpolation [lo]. For convenience, 
we put in the following x, = n and x,,, = N. Let S(x) be a cubical spline function 
such that 

S(i) = diO = 1 for i= 0 

=o for i# 0 
(11) 

with 

S”(k co) = 0. (12) 

S(x) is a symmetric function of x and can be used to construct an interpolation U(X) 
to the set of ordinates {Vi} by 

U(x) = 5 U,S(x - i). 
i=O 

(13) 

U(x) certainly interpolates {Ui} but does not yet satisfy the boundary conditions 

U”(0) = U”(N) = 0. (14) 
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It rather satisfies 

u”(+co) = 0. (15) 

Boundary conditions (14) may be met by a simple modification of (13). We define 
two additional ordinates K, and UN+, at x = - 1 and x = N + 1, respectively, and 
replace (13) by 

N+l 

U(x) = Y  UiS(X - i). 
i=Y_1 

(16) 

U(x) still interpolates { Ui) for arbitrary U-, and UN+, in the range 0 < x < N. We 
may therefore choose U-, and UN+, such that (14) is fulfilled. This leads to 

u 
-1 

= F,S”(l) - FJ”(N + 1) 
S”( 1)’ - S”(N + I)* ’ 

U 
FNS”(l) - FoS”(fv + 1) 

N+l = syl)‘_ s”(N+ I)* ’ 

(17) 

(18) 

where 

F, = - 5 S”(i) Vi, FN=- i S”(N-i)Ui. (19) 
i=O i=O 

Equations (16) through (19) represent the desired explicit spline representation of 
U(x) in terms of arbitrary unknown {Vi} for 0 <x < N. It remains to evaluate the 
function S(x) satisfying (11). With the abbreviations 

S(x) = S,(x - i), i<x<i+ 1, (20) 

and taking x - i = z, we have for Si(z), 0 < z < 1, 

S,(Z) = UiZ3 + biZ* + CiZ + di. (21) 

Applying the conditions of continuity of S, S’ and S” at the pivotal points yields the 
explicit expressions 

S,(z) = (3 fi- 4) 23 + 3(1 - fi) z* + 1, (22) 

S,(z) = 3[(5 - 3 fi) z3 + (2 fi- 3) z* + (fi- 2)z], (23) 

si+ lCz) = aSi(z)9 a=\/?;--, i> 1. (24) 

Since S(x) is a symmetric function of x, it follows that 

S,(z) = S&,(1 -z). 

A graph of the function S(x) is displayed for illustration purposes in Fig. 1. 

(25 1 
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FIG. 1. S(x) is the cubical spline function solving the interpolation problem S(i) = 6i,0. 

IV. EVALUATION OF MATRIX W 

From (7) and (9), the matrix W is defined by 

I NIuyX)12dx= 5 uiwijuj. (26) 
0 i,j=O 

Obviously, W is symmetric. Integrating (26) two times by parts and using the fact 
that the fourth derivative of U is zero on each interval (n, n + l), we get 

I ‘~ / U”(X)12 dx = Nf’ (UiU”‘(i’) - ui+l U”‘((i + 1)-)). (27) 
0 i=O 

The superscripts “f” and “-” denote the left- and right-hand limits, respectively. 
Using the explicit representation of V(x) as given in (16) and (20), (27) may be 
written as 

N N-l N+I 

~ Vi WijUj= C C (UiUjS:ILj- Ui+l UjS:!I-j>. 
i,j=O i=O j=-1 

(28) 

We have now suppressed the “+” and “-” superscripts because the third derivative 
of S is constant on each interval. After insertion of numerical values for S”’ from 
(22) through (25) and for U- i and UN+ i from (17) and (18), comparison of coef- 
ficients of products UiUj on both sides of (28) would yield the matrix elements Wij. 
They would, however, depend on N. This is inconvenient and, in fact, unnecessary if 
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consideration of numerical accuracy is taken into account. Since al6 - 7 + lo-“, we 
can approximate CT” by zero for n > 16 and rewrite (17) through (19): 

U_, = (1 + l/~) VO- ~ a’-‘Ui, 
i= 1 

(29) 

u N+l = (1 + I&5) u,- ? a’-‘UN-i. 
,r, (30) 

With these approximations, the evaluation of (28) leads to matrix elements Wij which 
are now independent of N. They are listed in (3 I), 

Woo = W - v’%, 

w,, = 6(6 fi- 1 l), 

Woi = 36(7 - 4 fi) a’-*, i> 2. 

For i> 1, j> 1 and i-t- j<N, 

Wii = 12(3 fi- 4) - 36(7 fi- 12) azi- 

Wi,i+l = 6(19 - 12 fi) - 36(7 fi- 12) azi-’ 

and for Ii- jla2, 

Wlj = 36(7 fi- 12)(ali-jj-* - ai+j-*)e 

They obey the symmetry relations 

Wij= W/i= WN-i,N-j= wN-j.N-i’ 

(31) 

(32) 

V. EVALUATION OF MATRIX C 

Contrary to W, the matrix C is different for each of the three cases in (4). We 
present only the first one in some detail. For the other two cases, we give only the 
relevant results. 

Equating (8) and (lo), and using representation (16) for U(x), we obtain 

,go Cij, Vi Uj = Ni’ Vi U, In S(X - i) S(n - x - j) dx. (33) 
i,j= - 1 0 

Let us denote the integral by 

I+,,= “S(x-i)S(n-x- j)dx; 
I 0 

(34) 
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then the following symmetry relations can be verified easily: 

hijn = hjin = hn-i,n-j,n = hn-j,n-i,n* (35) 

The relation between C,, and h,, can be worked out by using approximations (29) 
and (30), and equating coefficients of Ui Uj on both sides of (33). 

With 

we obtain 

a,=l+l/fi; ai = --a’- ‘, i> 1, (36) 

cijn = hijn + aih-l,j,n + ajhi,-l,n + aN-ihN+I,j,n + uN-jhi,N+l,n 

+ aiajhpl.-l,n + aiaN-jh-I,N+l,n + uN-i”jhN+*,-l,n 

+ uN-i”N-jhN+ 1,N+ l,n* (37) 

The problem is now reduced to the evaluation of the integrals h,,. To do this, we 

TABLE I 

, 

I 

I 

I 

-L 
J<O 
] .o 

3CJ-c” 
, :n 

I>” 

, :o 

I<]<’ 

, :n 

1’” 

a<]+ 

] =n 

I >n 

, =o 

] =n 

I>” 

I >n 

,-a*” E a21,-n-ll 

-z -1 in-2lE+ 2c 
z -I A 

c -I In-~-2)8.2C.D+[l-a~“-“]E 

= -1 A+D+[I-a2’J-‘t]E 

= 0 F,+[l-a2’“-“] E 

= 1 D+ [l -a2’“-“1 E 

> 1 D+[l -a2’“--“] E 

< _ 1 lln-~-]-21B+2C*20+[2-a2’1-“-a2~J-’l]E 

= - 1 A+2D+[l -azl’-“+ 1 _ a2’“‘-“] E 

= 0 ~,.F,~[2-a~“~“-a”‘~“]E 

T  1 A+2D+[2 -a2’n-‘-“-a2”-2’] E 

> I (,+,+2)B+2C+2D+[2 -a2h-i-!‘a2’n-J-“]E 

= 1 1 A+D+[l -a”“-+“]~ 

> 1 II-~)B~~C~D~[I-~~‘“~‘~“]E 

> 1 ~~-llB~C~Dt[l-a~‘“~‘~“]E 

: 0 F,+[I-a”“-“]E 

= 1 A 

> 1 in-2)8+2C 

> I in- llB+C 

ITB 
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split the integration interval (0, n) in n subintervals of length 1. Suitable choice of the 
integration variables then yields with definition (20) for S(X) 

n-1 1 

hijn= C J SK-j(X)Sn-j--K-l(l -X)dX- (38) 
K=O 0 

The symmetry and recurrence relations (24) and (25) simplify the calculation even 
further. It can be shown that there are only six different integrals in (38) which have 
to be calculated explicitly. 

Table I finally lists the coefficients hii,, divided by a factor a”+j-“I. Not shown 
are the h,, for i > j since they can be obtained by use of (35). The constants A 
through F, are given in the first column of Table II. 

For the first derivative of autoconvolution integrals, the coefficients h,, are defined 
by 

h,, = 
5 

n S(x - i) S’(n -x - j) dx 
0 

with the symmetry relations 

(39) 

h[j, = hjin = -h,-i,,-j,, = -h,-j,"-[,,, (40) 

except if i = 0 and j = n where ho,n,n = -h,,o,n. 
The relation (37) between the matrix elements C,, and the coefficients h,, holds 

TABLE II 

A 

E 

C 

D 

E 

F 

F2 

q 

1*,-n > 

1+,-n 2 

0th Derivative 

-h (91/5+98, 

3 _- 
I 

-$39+21/5) 

& (15 - 7Js) 

,&0(77 fi-1321 

$ l9L -370) 

F 1 

2nd Derivative 



AUTOCONVOLUTION INTEGRALS 43 

also in this case. The resulting h,, are formally identical with the previous case and 
can again be obtained from Table I. The constants A through F, are different of 
course; they are listed in the second column of Table II. 

For the last case of (4), the coefficients hiin are determined by 

h,, = [” S’(x - i) S’(n -x-j) dx. 
‘0 

The symmetry relations analogous to (35) are 

hij, = hjin = hn-i,n-j+n = hn-j,n-i,n* (42) 

Equation (37) is correct also for this case. The coefticients h,, can again be obtained 
from Table I with the values of the constants A through F, given in the last column of 
Table II. 

VI. ITERATIVE SOLUTION OF THE NONLINEAR EQUATIONS 

As already pointed out in Section II, the solution of the deconvolution problem 
results from minimization of the functional 

@= 2 uiwijuj+A f (p,-Q2 
i,j= 1 n=l 

(43) 

with 

P, <= 5 Cij, Ui Uj, 
iJ= 1 

(44) 

where we have used explicitly the initial condition U, = 0. The necessary conditions 
for the minimum of functional (43) are 

K = l,..., N, (45) 

where we have used the symmetry of matrix W, Eq. (32). This system of nonlinear 
equations can be linearized, and we arrive at the following equations for the 
corrections AtiKm) in the mth iteration step: 

u(‘,+ I’ z.z uKrn’ + AuKm’, 
K (46) 

5 ( WKj + 4A 2 G$!‘G;;) + 2A I,“$)) A C/j”‘) 
j=l i=l 

= 2,I. T Gj;)pj - ‘f’ ( WKj + 22 2 Gj,“‘G;;‘) Uj”“. (47) 
j=l ,e, i=l 
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The matrices GCm’ and vrn) are defined by 

(48) 

(49) 

In deriving (47), we have used the relation 

c, = CjiK (50) 

which can be verified in all three cases from Eqs. (35), (37), (40), and (42). 
The iteration process can be terminated if dUKm) 

with tiKm). Of course, the VKm) 
is sufficiently small compared 

depend on the parameter 1 which determines the 
smoothness of the solution. A proper choice of 1 is such that the differences IP, - F,, ] 
are of the same order as the estimated or measured experimental uncertainty of the 
p,,. This value of A must be determined by repeated trial and error computations. 
Because of the errors OF, in the experimental data pj, the calculated values of Vi are 
also erroneous. As in [ 111, their errors crvi can be obtained by adding “noise” to the 
input data pn and calculating the corresponding Ui. A more rigorous way is to use 
the general error propagation law 

The partial derivatives can be obtained by rewriting (45) for p,, + Ap,, and the 
corresponding Vi + AUi. Keeping only linear terms in AUi and Ap,, and using (45) 
for Vi and p,, , we arrive at the following relation between AUi and Apj: 

wKj+41 i Gi,Gij+2LVKj AUj=21 T’ GjKApje (52) 
i=l ,e, 

Defining a matrix R by 

R, = WKj + 4sl 2 GiK G, + 21VKj (53) 
i=l 

and assuming that the inverse matrix R - ’ of R exists, we obtain for the partial 
derivatives 

aUi 
z=U $J (R-‘)IKG~K. 

J K=l 
(54) 
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VII. PRACTICAL ASPECTS OF PROGRAMMING THE ALGORITHM 

In the preceding sections, we have presented the mathematics of our method for the 
inversion of autoconvolution integrals. However, there are still some points to 
consider in programming this algorithm on a digital computer. In deriving the 
matrices Wij and C,,, we have already assumed that we can neglect powers of a” for 
n > 16. If we apply this approximation systematically in computing the coefficients 
h,,, most of them are zero, and the sum (37) reduces to a few terms for most of the 
combinations of i, j and n. Since the calculation of the matrices G and I’ is rather 
time consuming, it is necessary to have a good initial guess for q” in order to reduce 
the number of iteration steps. We use for the calculation of q” a modified version of 
the algorithm described in [ 121. 

In the evaluation of the errors uUi, it is necessary to have a solution Ui with 
sufficiently high accuracy since we have assumed in deriving (52) that Eq. (45) is 
fulfilled exactly. 

VIII. APPLICATION TO APPEARANCE POTENTIAL SPECTRA 

The deconvolution method described in the previous sections has been employed to 
process a CIS measurement by Hanzely and Liefeld [ 131, as well as SXAPS and 
AEAPS measurements performed in our laboratory. The three types of experiments 
correspond to deconvolution of Eqs. (1) through (3), respectively, and should yield 
essentially identical results. Deviations of the solutions from each other may be 
attributed to different experimental resolutions. Figure 2a shows the CIS 
measurement, the corresponding deconvolution being displayed in Fig. 2b. This result 
was obtained with a value of 300 for A, the input data having been scaled to 
C;=,p;= 1. Th e 1 ower part of Fig. 2a shows the difference between the experimental 
data and the autoconvolution of the result in Fig. 2b magnified by an appropriate 
factor. The two dashed horizontal lines indicate the confidence limits due to 
experimental uncertainty. The resulting errors in the deconvolution result have been 
calculated with (51) through (54) and are displayed as error bars in Fig. 2b. These 
mean deviations are of the same order as those estimated by varying the input data 
according to [ 111. A variation in the solution of the same size is obtained by 
changing the parameter 1 from 30 to 3000. Corresponding calculations have been 
carried out for SXAPS and AEAPS spectra of the iron L,,, line; the results are 
displayed in Figs. 3 and 4. 

A comparison of the three deconvolution results is given in Fig. 5. We consider the 
agreement between the three cases as excellent regarding the differences in the 
experimental approach. 
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0 2 L 6 

EXCESS ENERGYleV 

0 J 
-2 0 2 L 6 

b IE-E,l/eV 

FIG. 2. (a) The dots represent a CIS measurement of an iron L,,, -line from 1131, whereas the solid 
line gives the autoconvolution of the deconvolution result in (b). In the lower part, differences between 
autoconvolution and data points (magnified by 5) are compared with the experimental error 
(dashed lines). (b) Deconvolution result of (a), A = 300, with calculated error bars. 
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0 2 L 6 
EXCESS ENERGY/eV 

a 

I  I  I  I  I  t , ,  (  ,  

-2 0 2 L 6 

b 
IE-E,)/cV 

FIG. 3. (a) The dots represent a SXAPS measurement of an iron L,,, -line. The solid line gives the 
autoconvolution of the deconvolution result in (b). In the lower part, differences between autocon- 
volution and data points (magnified by 20) are compared with the experimental error (dashed lines). 
(b) Deconvolution result of (a), 1= 300, with calculated error bars. 

5Xl’4l/I 4 
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t I\ AEAPS 

-2 0 2 L 6 

FIG. 4. (a) The dots represent an AEAPS measurement of an iron L,,,-line. The solid line gives the 
autoconvolution of the deconvolution result in (b). In the lower part, differences between autocon- 
volution and data points (magnified by 20) are compared with the experimental error (dashed lines). 
(b) Deconvolution result of (a), I = 300, with calculated error bars. 
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m--SXAPS m--SXAPS - - 

- --AEAPS - --AEAPS - - 

-2 -2 0 0 2 2 4 6 4 6 
IE-EF)/cV IE-EF)/cV 

FIG. 5. Comparison of deconvolution results of iron &,-measurements. 

IX. DISCUSSION 

There have been several other approaches to the problem treated in this paper. A 
critical review of early work including the Fourier transform technique was given by 
Hagstrum and Becker [8]. They developed a sequential deconvolution procedure 
applicable to cases where the unfold U(x) exhibits a step-like behaviour at the origin 
x = 0. Data smoothing preceding the deconvolution is necessary in their method. The 
problem of data smoothing arises necessarily in all other solutions known so far. 
Thus, the approach by Martinez [14] differs from the earlier work of Mularie and 
Peria [ 151 only as far as smoothing of both data and Fourier transforms are 
concerned. Onsgaard and Morgan [ 161 and Garot and Boiziau [ 171 present solutions 
in terms of spline functions. In both cases, a trial autoconvolution is fitted to the 
experimental input data by least-squares techniques. Usually at least twice as many 
points in the input data as for the unfold are required in order to get the necessary 
degrees of freedom in the fitting procedure. Our method, however, offers complete 
transfer of information. The number of data points equals the number of ordinates of 
the calculated unfold. The treatment of noise is incorporated in the algorithm in a 
somehow natural and mathematically consistent manner. The accuracy of the unfold 
can always be matched to the precision of the input data by suitable choice of the 
Lagrange parameter A. 
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